
Numerical integration
(a.k.a quadrature formulas or quadrature rules)

Quadrature rules are used to approximate integrals of functions that we
are not able to compute exactly.
Given g : [a, b] → R, the most common quadrature rules look like∫ b

a
g(x) dx ≃

k+1∑
i=1

ωig(xi )

where: x1, x2, · · · , xk+1 are the quadrature “ points” or “nodes” of the
rule and ω1, ω2, · · · , ωk+1 are called quadrature “weights”

Definition: The order of precision of a quadrature rule is the maximum
degree of the polynomials which are integrated exactly by the rule.

Among the numerous quadrature rules, we shall see the so-called
interpolatory rules.
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Interpolatory quadrature rules
The function g is approximated by its Lagrange interpolant Πk(x) (of degree
≤ k =) with respect to the given nodes x1, x2, · · · , xk+1, and then the integral of
the polynomial is computed exactly.
Then ∫ b

a
g(x) dx ≃

∫ b

a
Πk(x) dx =

∫ b

a

k+1∑
i=1

g(xi )Li (x) dx

=
k+1∑
i=1

g(xi )

∫ b

a
Li (x) dx︸ ︷︷ ︸
ωi

The order of precision of an interpolator formula will be at least k : indeed if
g ∈ Pk (where Pk is the space of polynomials of degree ≤ k) then g is integrated
exactly
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Error analysis for interpolatory quadrature rules
Bounds for the quadrature error are derived by the bounds for the interpolation error
(see the slides on Lagrange interpolation):

max
x∈[a,b]

|g(x)− Πk(x)| ≤
(b − a)k+1

(k + 1)!
max
x∈[a,b]

|g (k+1)(x)| (∗)

Thus,∣∣∣∣∫ b

a
g(x) dx −

∫ b

a
Πk(x) dx

∣∣∣∣ = ∣∣∣ ∫ b

a
(g(x)− Πk(x)) dx

∣∣∣ ≤ ∫ b

a
|g(x)− Πk(x)| dx

≤
∫ b

a
max
[a,b]

|g(x)− Πk(x)| dx = (b − a)max
[a,b]

|g(x)− Πk(x)|

≤ (b − a)k+2

(k + 1)!
max
x∈[a,b]

|g (k+1)(x)|

(1)

(Observe that if g ∈ Pk , then g (k+1)(x) ≡ 0. Hence, the quadrature error is = 0)

This estimate is obtained using the generic bound for the interpolation error. Sharper
estimates can be obtained by analysing each rule directly, as we shall see.
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Use of quadrature rules

It should be clear by now that if we want a good approximation of an
integral we have to use properly the rules in order to make the error as
smaller as we want. Exactly like we did for Lagrange interpolation, we will
construct piecewise integration rules, also called composite integration
rules.

Given f : [a, b] → R (smooth enough), subdivide [a, b] in N subintervals,
for simplicity of notation all equal. We have then a uniform subdivision of
[a, b] into intervals of length h = (b − a)/N:
I1 = [x1, x2], · · · , Ij = [xj , xj+1], · · · , IN = [xN , xN+1]. In each subinterval
we approximate f with a Lagrange interpolant polynomial of degree k .
Thus, ∫ b

a
f (x) dx =

N∑
j=1

∫ xj+1

xj

f (x) dx ≃
N∑
j=1

∫ xj+1

xj

Πk(x) dx

Let us see some examples.
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Composite midpoint rule

xMj =midpoint of the interval Ij : xMj = (xj + xj+1)/2

f (x)|[a,b] ≃ f0(x) piecewise constant function given by

f0(x)|Ij = f (xMj ) j = 1, 2, · · · ,N∫ b

a
f (x) dx ≃

∫ b

a
f0(x) dx =

N∑
j=1

∫ xj+1

xj

f (xMj ) dx = h
N∑
j=1

f (xMj )
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Composite midpoint rule: pseudocode

Composite midpoint rule

Input: f , a, b, N.
h = (b − a)/N
for i = 1, 2, . . . ,N + 1

xi = a+ (i − 1)h
end
for i = 1, 2, . . . ,N

xMi = (xi + xi+1)/2
end
S = 0
for i = 1, 2, . . . ,N

S = S + f (xMi )h
end
Output: S .
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Composite trapezoidal rule

f (x)|[a,b] ≃ f1(x) piecewise linear function which, on each interval Ij , is the
Lagrange interpolant of degree ≤ 1 with respect to the endpoints of Ij∫ b

a
f (x) dx ≃

∫ b

a
f1(x) dx =

N∑
j=1

∫ xj+1

xj

Π1(x) dx =
h

2

N∑
j=1

[f (xj) + f (xj+1)]
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Composite Simpson rule

f (x)|[a,b] ≃ f2(x) piecewise quadratic function which, on each interval Ij , is
the Lagrange interpolant of degree ≤ 2 with respect to the endpoints and
the midpoint of Ij∫ b

a
f (x) dx ≃

∫ b

a
f2(x) dx =

h

6

N∑
j=1

[f (xj) + 4f (xMj ) + f (xj+1)]

Exercise: prove the formula using slide 2/15 in each interval...
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Composite Midpoint rule: error bound

ERR =
∣∣∣ N∑
j=1

∫ xj+1

xj

(f (x)− f (xMj )) dx︸ ︷︷ ︸
∣∣∣

Ej

Use in each Ij the Taylor expansion centered in xMj

f (x) = f (xMj )+ (x − xMj )f ′(xMj )+
(x − xMj )2

2!
f ′′(z) ( for z between x and xMj )

Ej =

∫ xj+1

xj

(x − xMj )f ′(xMj ) dx︸ ︷︷ ︸+
∫ xj+1

xj

(x − xMj )2

2!
f ′′(z) dx

= 0

≤ 1

2
max
[Ij ]

|f ′′(x)|
∫ xj+1

xj

(x − xMj )2 dx =
max[Ij ] |f

′′(x)|
24

h3
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Composite Midpoint rule: error bound
The global error is the sum of the error in each subinterval.

ERR ≤
N∑
j=1

|Ej | ≤
max[a,b] |f ′′(x)|

24
h3N =

max[a,b] |f ′′(x)|
24

(b − a)h2

(we used Nh = b − a and max[Ij ] |f
′′(x)| ≤ max[a,b] |f ′′(x)|).

We see that the error is zero if f ′′ ≡ 0 in each Ij , i.e., if f is a piecewise polynomial
of degree 1. Hence, the order of precision of the midpoint rule is actually 1 (even
though we are projecting onto piecewise constants!)
To summarize:

ERR ≤ C h2 with C =
max[a,b] |f ′′(x)|

24
(b − a)

The ERR → 0 for h → 0 quadratically with h (halving h reduces the error by 4).
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Hints on Gaussian rules * NOT FOR THE EXAM *
Conclusions The order of precision of an interpolatory quadrature rule using n
nodes is at least n− 1 (that is, the rule integrates exactly polynomials of degree up
to n − 1).

If the n nodes are Gauss points (special points that are defined as roots of
Legendre polynomials) the order of precision is higher: precisely, 2n − 1.

Operatively: Gauss points are computed in the open interval ]− 1, 1[:

n = 1

∫ 1

−1
g(x) dx ≈ 2g(0)

n = 2

∫ 1

−1
g(x) dx ≈ g

(
− 1√

3

)
+ g

(
+

1√
3

)
n = 3

∫ 1

−1
g(x) dx ≈ 5

9
g

(
−
√
3√
5

)
+

8

9
g(0) +

5

9
g

(√
3√
5

)
n = 4 ... see the reference books
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Hints on Gaussian rules * NOT FOR THE EXAM *

To compute Gauss points on a generic interval [a, b] and use them for

evaluating

∫ b

a
g(x) dx is simple. Consider the map

F : [−1, 1] → [a, b], that is, x̂ ∈ [−1, 1] → x = F (x̂) ∈ [a, b]

It is easy to check that the map is linear, given by x = b−a
2 x̂ + a+b

2
Hence, if x̂1 is a Gauss point in ]− 1, 1[, the point

x1 =
b − a

2
x̂1 +

a+ b

2
is a Gauss point in [a, b]

Instead, the quadrature weights get scaled by a factor F ′ = b−a
2 (use

change of variable to prove it).
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